Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8553, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609434

RESUMO

The Notch-signalling pathway plays an important role in pattern formation in Hydra. Using pharmacological Notch inhibitors (DAPT and SAHM1), it has been demonstrated that HvNotch is required for head regeneration and tentacle patterning in Hydra. HvNotch is also involved in establishing the parent-bud boundary and instructing buds to develop feet and detach from the parent. To further investigate the functions of HvNotch, we successfully constructed NICD (HvNotch intracellular domain)-overexpressing and HvNotch-knockdown transgenic Hydra strains. NICD-overexpressing transgenic Hydra showed a pronounced inhibition on the expression of predicted HvNotch-target genes, suggesting a dominant negative effect of ectopic NICD. This resulted in a "Y-shaped" phenotype, which arises from the parent-bud boundary defect seen in polyps treated with DAPT. Additionally, "multiple heads", "two-headed" and "ectopic tentacles" phenotypes were observed. The HvNotch-knockdown transgenic Hydra with reduced expression of HvNotch exhibited similar, but not identical phenotypes, with the addition of a "two feet" phenotype. Furthermore, we observed regeneration defects in both, overexpression and knockdown strains. We integrated these findings into a mathematical model based on long-range gradients of signalling molecules underlying sharply defined positions of HvNotch-signalling cells at the Hydra tentacle and bud boundaries.


Assuntos
Hydra , Animais , Hydra/genética , Inibidores da Agregação Plaquetária , Transdução de Sinais , Animais Geneticamente Modificados ,
2.
Int J Dev Biol ; 63(6-7): 259-270, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31250909

RESUMO

Mechanisms of programmed cell death differ between animals, plants and fungi. In animals, apoptotic cell death depends on caspases and Bcl-2 family proteins. These protein families are only found in multicellular animals, including cnidarians, insects and mammals. In contrast, members of the TMBIM-family of transmembrane proteins are conserved across all eukaryotes. Sequence comparisons of cell death related proteins between phyla indicate strong conservation of the genes involved. However, often it is not known whether this is paralleled by conservation of function. Here we present the first study to support an anti-apoptotic function of Bcl-2 like proteins in the cnidarian Hydra within a physiological context. We used transgenic Hydra expressing GFP-tagged HyBcl-2-like 4 protein in epithelial cells. The protein was localised to mitochondria and able to protect Hydra epithelial cells from apoptosis induced by either the PI(3) kinase inhibitor wortmannin or by starvation. Moreover, we identified members of the TMBIM-family in Hydra including HyBax-Inhibitor-1, HyLifeguard-1a and -1b and HyLifeguard 4. Expressing these TMBIM-family members in Hydra and human HEK cells, we found HyBax-inhibitor-1 protein localised to ER-membranes and HyLifeguard-family members localised to the plasma membrane and Golgi-vesicles. Moreover, HyBax-inhibitor-1 protected human cells from camptothecin induced apoptosis. This work illustrates that the investigated Bcl-2- and TMBIM-family members represent evolutionarily conserved mitochondrial, ER, Golgi and plasma membrane proteins with anti-apoptotic functions. The participation of ER and Golgi proteins in the regulation of programmed cell death might be a very ancient feature.


Assuntos
Animais Geneticamente Modificados/metabolismo , Apoptose , Regulação da Expressão Gênica , Hydra/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/crescimento & desenvolvimento , Células HEK293 , Humanos , Hydra/efeitos dos fármacos , Hydra/genética , Imunossupressores/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Homologia de Sequência , Inanição , Wortmanina/farmacologia , Proteína X Associada a bcl-2/genética
3.
Nat Protoc ; 14(7): 2069-2090, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31160787

RESUMO

The freshwater polyp Hydra is a cnidarian used as a model organism in a number of fields, including the study of the origin and evolution of developmental mechanisms, aging, symbiosis and host-microbe interactions. Here, we describe a procedure for the establishment of stable transgenic Hydra lines by embryo microinjection. The three-stage protocol comprises (i) the design and preparation of a transgenic construct, (ii) the microinjection of the vector into early embryos of Hydra vulgaris, and (iii) the selection and enrichment of mosaic animals in order to develop uniformly transgenic clonal lines. The preparation of a transgenic construct requires ~2 weeks, and transgenic lines can be obtained within 3 months. The method allows constitutive or inducible gain- and loss-of-function approaches, as well as in vivo tracing of individual cells. Hydra polyps carrying transgenic cells reveal functional properties of the ancestral circuitry controlling animal development.


Assuntos
Técnicas de Transferência de Genes , Hydra/citologia , Hydra/genética , Animais , Animais Geneticamente Modificados , Blastômeros , Embrião não Mamífero , Expressão Gênica , Proteínas de Fluorescência Verde/genética , Hydra/embriologia , Microinjeções , RNA Interferente Pequeno
4.
Int J Dev Biol ; 62(4-5): 311-318, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29877570

RESUMO

Understanding the dynamic cellular behaviours driving morphogenesis and regeneration is a long-standing challenge in biology. Live imaging, together with genetically encoded reporters, may provide the necessary tool to address this issue, permitting the in vivo monitoring of the spatial and temporal expression dynamics of a gene of interest during a variety of developmental processes. Canonical Wnt/ß-catenin signalling controls a plethora of cellular activities during development, regeneration and adulthood throughout the animal kingdom. Several reporters have been produced in animal models to reveal sites of active Wnt signalling. In order to monitor in vivo Wnt/ß-catenin signalling activity in the freshwater polyp Hydra vulgaris, we generated a ß-cat-eGFP transgenic Hydra, in which eGFP is driven by the Hydra ß-catenin promoter. We characterized the expression dynamics during budding, regeneration and chemical activation of the Wnt/ß-cat signalling pathway using light sheet fluorescence microscopy. Live imaging of the ß-cat-eGFP lines recapitulated the previously reported endogenous expression pattern of ß-catenin and revealed the dynamic appearance of novel sites of Wnt/ß-catenin signalling, that earlier evaded detection by mean of in situ hybridization. By combining the Wnt activity read-out efficiency of the ß-catenin promoter with advanced imaging, we have created a novel model system to monitor in real time the activity of Hydra ß-cat regulatory sequences in vivo, and open the path to reveal ß-catenin modulation in many other physiological contexts.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Hydra/embriologia , Regeneração/fisiologia , Via de Sinalização Wnt/fisiologia , beta Catenina/metabolismo , Animais , Animais Geneticamente Modificados , Padronização Corporal/fisiologia , Hydra/genética , Hydra/metabolismo , Microscopia de Fluorescência , Proteínas Wnt/metabolismo , beta Catenina/genética
5.
Proc Natl Acad Sci U S A ; 109(48): 19697-702, 2012 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-23150562

RESUMO

Hydra's unlimited life span has long attracted attention from natural scientists. The reason for that phenomenon is the indefinite self-renewal capacity of its stem cells. The underlying molecular mechanisms have yet to be explored. Here, by comparing the transcriptomes of Hydra's stem cells followed by functional analysis using transgenic polyps, we identified the transcription factor forkhead box O (FoxO) as one of the critical drivers of this continuous self-renewal. foxO overexpression increased interstitial stem cell and progenitor cell proliferation and activated stem cell genes in terminally differentiated somatic cells. foxO down-regulation led to an increase in the number of terminally differentiated cells, resulting in a drastically reduced population growth rate. In addition, it caused down-regulation of stem cell genes and antimicrobial peptide (AMP) expression. These findings contribute to a molecular understanding of Hydra's immortality, indicate an evolutionarily conserved role of FoxO in controlling longevity from Hydra to humans, and have implications for understanding cellular aging.


Assuntos
Fatores de Transcrição Forkhead/fisiologia , Hydra/citologia , Células-Tronco/metabolismo , Animais , Animais Geneticamente Modificados , Linhagem da Célula , Fatores de Transcrição Forkhead/genética , Inativação Gênica , Hydra/imunologia , Hydra/metabolismo , Imunidade Inata , Dados de Sequência Molecular
6.
Mol Biol Evol ; 29(11): 3267-80, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22595987

RESUMO

How distinct stem cell populations originate and whether there is a clear stem cell "genetic signature" remain poorly understood. Understanding the evolution of stem cells requires molecular profiling of stem cells in an animal at a basal phylogenetic position. In this study, using transgenic Hydra polyps, we reveal for each of the three stem cell populations a specific signature set of transcriptions factors and of genes playing key roles in cell type-specific function and interlineage communication. Our data show that principal functions of stem cell genes, such as maintenance of stemness and control of stem cell self-renewal and differentiation, arose very early in metazoan evolution. They are corroborating the view that stem cell types shared common, multifunctional ancestors, which achieved complexity through a stepwise segregation of function in daughter cells.


Assuntos
Linhagem da Célula/genética , Perfilação da Expressão Gênica , Hydra/citologia , Hydra/genética , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Evolução Biológica , Separação Celular , Regulação da Expressão Gênica , Teste de Complementação Genética , Camundongos , Filogenia , Coloração e Rotulagem , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma/genética
7.
Proc Natl Acad Sci U S A ; 107(42): 18067-72, 2010 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-20921390

RESUMO

Early embryos of many organisms develop outside the mother and are immediately confronted with myriads of potential colonizers. How these naive developmental stages control and shape the bacterial colonization is largely unknown. Here we show that early embryonic stages of the basal metazoan Hydra are able to control bacterial colonization by using maternal antimicrobial peptides. Antimicrobial peptides of the periculin family selecting for a specific bacterial colonization during embryogenesis are produced in the oocyte and in early embryos. If overexpressed in hydra ectodermal epithelial cells, periculin1a drastically reduces the bacterial load, indicating potent antimicrobial activity. Unexpectedly, transgenic polyps also revealed that periculin, in addition to bactericidal activity, changes the structure of the bacterial community. These findings delineate a role for antimicrobial peptides both in selecting particular bacterial partners during development and as important components of a "be prepared" strategy providing transgenerational protection.


Assuntos
Bactérias/crescimento & desenvolvimento , Embrião não Mamífero/microbiologia , Hydra/embriologia , Peptídeos/fisiologia , Animais , Animais Geneticamente Modificados , Dados de Sequência Molecular
8.
Zoology (Jena) ; 112(3): 185-94, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19201587

RESUMO

Multicellular organisms consist of a variety of cells of distinctive morphology, with the cell shapes often reproduced with astonishing accuracy between individuals and across species. The morphology of cells varies with tissues, and cell shape changes are of profound importance in many occasions of morphogenesis. To elucidate the mechanisms of cell shape determination and regulation is therefore an important issue. One of the simplest multicellular organisms is the freshwater polyp Hydra. Although much is known about patterning in this early branching metazoan, there is currently little understanding of how cells in Hydra regulate their shape in response to upstream signals. We previously reported generation of transgenic Hydra to trace cells and to study cell behavior in vivo in an animal at the basis of animal evolution. Here, we use a novel transgenic line which expresses enhanced green fluorescent protein (eGFP) specifically in the ectodermal epithelial cells to analyze the structure and shape of epithelial cells as they are recruited into specific regions along the body column and respond to upstream signals such as components of the canonical Wnt signaling pathway. As a general theme, in contrast to epithelial cells in more complex animals, ectodermal epithelial cells in Hydra are capable of drastic changes in structure, shape, and cell contact along the body column. The remarkable phenotypic plasticity of epithelial cells in response to positional signals allows Hydra to build its body with only a limited number of different cell types.


Assuntos
Células Epiteliais/citologia , Hydra/citologia , Hydra/genética , Adaptação Fisiológica/fisiologia , Animais , Forma Celular/fisiologia , Citoesqueleto/metabolismo , Regulação da Expressão Gênica , Organismos Geneticamente Modificados , Transdução de Sinais , Proteínas Wnt/metabolismo
9.
Dev Biol ; 309(1): 32-44, 2007 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17659272

RESUMO

Little is known about stem cells in organisms at the beginning of evolution. To characterize the regulatory events that control stem cells in the basal metazoan Hydra, we have generated transgenics which express eGFP selectively in the interstitial stem cell lineage. Using them we visualized stem cell and precursor migration in real-time in the context of the native environment. We demonstrate that interstitial cells respond to signals from the cellular environment, and that Wnt and Notch pathways are key players in this process. Furthermore, by analyzing polyps which overexpress the Polycomb protein HyEED in their interstitial cells, we provide in vivo evidence for a role of chromatin modification in terminal differentiation. These findings for the first time uncover insights into signalling pathways involved in stem cell differentiation in the Bilaterian ancestor; they demonstrate that mechanisms controlling stem cell behaviour are based on components which are conserved throughout the animal kingdom.


Assuntos
Evolução Biológica , Hydra/metabolismo , Receptores Notch/metabolismo , Células-Tronco/citologia , Proteínas Wnt/metabolismo , Animais , Animais Geneticamente Modificados , Diferenciação Celular/fisiologia , Líquido Extracelular/metabolismo , Hydra/genética , Transdução de Sinais
10.
Proc Natl Acad Sci U S A ; 103(16): 6208-11, 2006 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-16556723

RESUMO

Understanding the evolution of development in large part relies on the study of phylogenetically old organisms. Cnidarians, such as Hydra, have become attractive model organisms for these studies. However, despite long-term efforts, stably transgenic animals could not be generated, severely limiting the functional analysis of genes. Here we report the efficient generation of transgenic Hydra lines by embryo microinjection. One of these transgenic lines expressing EGFP revealed remarkably high motility of individual endodermal epithelial cells during morphogenesis. We expect that transgenic Hydra will become important tools to dissect the molecular mechanisms of development at the base of the Metazoan tree.


Assuntos
Movimento Celular , Hydra/citologia , Hydra/embriologia , Morfogênese , Células-Tronco/citologia , Animais , Animais Geneticamente Modificados , Células Cultivadas , Endoderma/química , Endoderma/citologia , Endoderma/fisiologia , Células Epiteliais/química , Células Epiteliais/citologia , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Hydra/genética , Morfogênese/genética , Células-Tronco/química , Células-Tronco/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA